
Broadcasts

Services

Notifications

Android

❖ Application components that can receive ‘intents’
from other components
• Broadcast receivers can be declared in the manifest or

registered dynamically

• They can have an associated ACTION or cross-application
explicit intent

• They are invoked using sendBroadcast()
▪ It needs an intent matching the declared one (action) or package

and class name

▪ The intent can transport extra data

▪ sendBroadcast() can be invoked by any other application
component (Activity, Service, Content Provider) in the same or
other application (with restrictions after API 26)

• Broadcast receivers extend class BroadcastReceiver
▪ They must override the method onReceive()

▪ They don’t have any user interface

• The application containing the Broadcast receiver is
activated and the onReceive() method invoked

Background, Services, Notifications 2

Broadcast receivers

❖ Receives notifications (intents) sent by other

applications (mainly the by the OS components)

• Inherits from android.content.BroadcastReceiver

• Can be declared in the <receiver> tag in the Manifest

• Can be declared programmatically (Context.registerBroadcast())

• Normally execute in response to calls to

Context.sendBroadcast(Intent)

• The onReceive(context, intent) method executes

Android Applications 3

Broadcast Receivers

onReceive()

BroadcastReceiver

sendBroadcast()

Sending a broadcast

Background, Services, Notifications 4

Activity

Intent bi = …
sendBroadcast(bi);

BroadcastReceiver

onReceive()

…
<application>
…
<receiver android:name=“ … “ >
<intent-filter>
<action android:name=“ … “ />

</intent-filter>
</receiver>

…

Manifest

Application 1 Application 2

should match

Broadcast receiver example

Background, Services, Notifications 5

public class MyReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

String msg = intent.getStringExtra(“somename”);
//Do something

}
}

Public class MyActivity extends Activity {
…
private void invokeReceiver() {

Intent broadcast = new Intent (
“org.feup.intents.test”);

broadcast.putExtra(“somename”, “Hello”);
sendBroadcast(broadcast);

}
…

}

Manifest definition

<manifest>
<application>
…
<receiver android:name=“.MyReceiver”>
<intent-filter>
<action android:name=“org.feup.intents.test” />

</intent-filter>
</receiver>
…

</application>
…

</manifest>

The receiver

The broadcast Activity

Processes and receivers / services

Background, Services, Notifications 6

Activity

Android process

Main
thread

Message
queue

system

pick

call

Application Not Responding
if the cycle takes more than
a few seconds

Receiver

Other processsendBroadcast()
startService()

stopService()

Other thread

bindService()

Service

service
methods
call

❖ Can be invoked from other clients
•Clients are in the same process or in other processes
▪ Using a local intent (class) or an implicit one (action)

•Services don´t have an user interface

• If the service process is not in memory it is started
▪ the onCreate() method is executed

•Any client can invoke a service asynchronously
▪ calling startService() which will invoke onStartCommand()

▪ stopService() will try to terminate the service (onDestroy() is
invoked in this procedure)

▪ A service can terminate itself calling stopSelf()

•A client can call bindService() to establish a channel
and obtain a service interface (remote call service)
▪ The client can then call the interface methods

Background, Services, Notifications 7

Services

❖ Services are freed when

• Stopped explicitly

▪ stopService() from the client

▪ stopSelf() on the service itself

• Android needs the memory or resources they occupy,

terminating the service (always after onStartCommand() had

returned)

▪ Services have high priorities, but less then the active Activity

❖ They can be automatically brought to memory again if

terminated by Android

• Depending on the onStartCommand() return value

▪ START_NOT_STICKY – they are not brought to memory until a new

startService() is executed

▪ START_STICKY – they are brought to memory again, but with a

NULL intent

▪ START_REDELIVER_INTENT - they are brought to memory again

with the last processed intent
Background, Services, Notifications 8

Services

❖Creation

•Can be initiated and terminated from other parts

•Or the service can be created by a connection (bind)

•A service inherits from android.app.Service

Android Applications 9

Services and their lifecycle

Active

Lifetime

Full

Lifetime

Service skeleton

Background, Services, Notifications 10

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class MyService extends Service {
@Override
public void onCreate() {

// TODO: Actions to perform when service is created.
}

@Override
public IBinder onBind(Intent intent) {

return null; // mandatory but should return null for
// non remote call services

}

@Override
public int onStartCommand(Intent intent, int flags, int startId) {

// Usually launch a background thread to do processing.
return Service.START_NOT_STICKY; // or other value

}

@Override
public void onDestroy() {

// TODO: Actions to perform when service is destroyed
}

}

Manifest:
<service android:name=".MyService"/>

// Implicitly start a Service

Intent myIntent =

new Intent(MyService.ORDER_PIZZA);

myIntent.putExtra("TOPPING", "Margherita");

startService(myIntent);

// Explicitly start a Service in the same process

startService(new Intent(this, MyService.class));

Calling the service

// With the same intent

stopService(new

Intent(MyService.ORDER_PIZZA));

// Stop a service with the service name (same proc).

ComponentName service =

startService(new Intent(this, MyService.class));

...

stopService(new Intent(this, service.getClass()));

// Stop a service explicitly in the same process

Class serviceClass =

Class.forName(service.getClassName());

stopService(new Intent(this, serviceClass));

Stopping the service

❖ It’s a special purpose Service subclass that

creates a single worker thread

•The intent received on onStartCommand() is passed to

the method that the worker thread executes

•Successive calls on onStartCommand() are queued

•You only have to override and implement

onHandleIntent()

Background, Services, Notifications 11

IntentService

public class MyService extends IntentService {
public MyService() {

super(“MyService”);
}

@Override
protected void onHandleIntent(Intent intent) {

// Do the work in this single worker thread
// and return

}
}

❖ Mechanism to return a result to an Activity (or

other component activated by an Intent) from

other component or thread (using a Handler())

▪ It is created on the destination with onReceiveResult()

overridden

▪As this class is Parcelable their objects can be passed

in Intents

▪The recipient sends results using send(), triggering a

call to onReceiveResult()

Background, Services, Notifications 12

ResultReceiver

Example of ResultReceiver

Background, Services, Notifications 13

//recipient Activity
public class MainActivity extends AppCompatActivity {

// some variables (Activity state)
....

@Override
protected void onCreate(Bundle savedInstanceState) {

...
Intent aService = new Intent(this, MyService.class);
aService.putExtra(MyService.RESULT, new ResultReceiver(new Handler()) {

@Override
protected void onReceiveResult(int code, Bundle data) {

super.OnReceiveResult(code, data);
.... // if code OK, use data and other Activity state
....

}
});

}
}

public class MyService extends Service {
public final static String RESULT = “RemoteResult”;
….
@Override
public int onStartCommand(Intent i, int flags, int sId) {

ResultReceiver rec = i.getParcelableExtra(MyService.RESULT);
….
Bundle data = new Bundle();
data.putString(“value”, “some data”);
….
rec.send(1, data);
return Service.START_NOT_STICKY;

}
….

}

Recipient component

(an Activity)

A service sending results

❖ Their functionality is invoked using RPC

•Predefined interface specified via an AIDL file

•Usually they are standalone in their own processes

•Remote call services are activated (brought to

memory and onCreate() invoked) through

bindService() and can be freed when the last bound

client calls unbindService()

▪ When a service is ready to be called through its interface a

callback onServiceConnected() is called on the client

▪ There is also a onServiceDisconnected() callback on the

client that is called when the service is not available

(motivated by a crash or reclaimed by Android)

Background, Services, Notifications 14

Remote call services

Remote call service

Background, Services, Notifications 15

Service

onBind()

Service interface

… methods …

Client Activity

ServiceConnection object

onServiceConnected()

onServiceDisconnected()

unbindService() passes

returns the Service interface

.

.

.
waits for connection
.
.
calls service methods
.
.

when ready

service method call

bindService()

Example

Background, Services, Notifications 16

Service interface is defined in an AIDL file

// This file is IStockQuoteService.aidl
package com.androidbook.services.stockquoteservice;

interface IStockQuoteService {
double getQuote(String ticker);

}

The service must implement the interface

public class StockQuoteService extends Service {
public class StockQuoteServiceImpl extends

IStockQuoteService.Stub {
@Override
public double getQuote(String ticker)

throws RemoteException {
return 20.0;

}
}

@Override
public IBinder onBind(Intent intent) {

return new StockQuoteServiceImpl();
}

}

…
bindService(new Intent(IStockQuoteService.class.getName()),

serConn, Context.BIND_AUTO_CREATE);
…

private ServiceConnection serConn = new ServiceConnection() {
@Override
public void onServiceConnected(ComponentName name,

IBinder service) {
stockService = IStockQuoteService.Stub.asInterface(service);
callBtn.setEnabled(true);

}
@Override
public void onServiceDisconnected(ComponentName name) {

callBtn.setEnabled(false);
stockService = null;

}
};

…
try {

double val = stockService.getQuote("ANDROID");
Toast.makeText(this, "Value from service is " + val,

Toast.LENGTH_SHORT)
.show();

} catch (RemoteException ee) {
}

The client calling the service

❖ Are shown in the status bar

• More details listed in the extended status drawer

• They can produce sound, vibration and light leds

• Created using a system service

• Specified in a Notification object through a Build class

• Sent using the notify() method of the service

Background, Services, Notifications 17

Notifications

String svcName = Context.NOTIFICATION_SERVICE;
NotificationManager notificationManager;
notificationManager = (NotificationManager) getSystemService(svcName);

// A small icon, a title and a text and mandatory (many other features)
// get the Notification object using the build() method
Notification notf = new Notification.Builder(this)

.setContentText(message) // the main text of the notification

.setContentTitle(title) // the first line (title)

.setSmallIcon(R.drawable.nticon) // icon on bar and notification

.setWhen(System.currentTimeMillis()) // for ordering

.setPendingIntent(PendingIntent pi) // Activity to launch on tap

.build(); // returns the notification object
notf.flags |= Notification.FLAG_ONGOING_EVENT; // cannot be cleared

Extended Notification Drawer

Background, Services, Notifications 18

Notifications with
standard views

Customized view
notification with a
RemoteViews object
featuring an Icon,
TextView and
ProgressBar

A customized notification

Background, Services, Notifications 19

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:padding="5dp"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<ImageView android:id="@+id/status_icon"
android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:layout_alignParentLeft="true“ />

<RelativeLayout android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:paddingLeft="10px"
android:layout_toRightOf="@id/status_icon">

<TextView android:id="@+id/status_text"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:textColor="#000"
android:textSize="14sp"
android:textStyle="bold“ />

<ProgressBar android:id="@+id/status_progress"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_below="@id/status_text"

android:progressDrawable="@android:drawable/progress_horizontal"
android:indeterminate="false"
android:indeterminateOnly="false“ />

</RelativeLayout>
</RelativeLayout>

Layout specification

// cancelling the notification
notificationManager.cancel(notificationRef);

Building the notification

Cancel

Intent intent = new Intent(this, MyActivity.class);
PendingIntent pi = PendingIntent.getActivity(this, 0, intent, 0));
Notification notification = new Notification.Builder(this)

.setSmallIcon(R.drawable.icon)

.setContentText(“Custom Content”)

.setWhen(System.currentTimeMillis())

.setCustomContentView(new RemoteViews(this.getPackageName(),
R.layout.my_status_window_layout)

.setPendingIntent(pi);

.build();
// allowing updates
notification.flags |= Notification.FLAG_ONGOING_EVENT;
// Putting state on the layout
notification.contentView.setImageViewResource(R.id.status_icon,

R.drawable.icon);
notification.contentView.setTextViewText(R.id.status_text,

"Current Progress:");
notification.contentView.setProgressBar(R.id.status_progress,
// emitting the notification 100, 50, false);
int notificationRef = 1;
notificationManager.notify(notificationRef, notification);

❖ Calls an application component periodically or

after a specified time interval

•Uses another system service

•We can use the methods set(), setRepeating() or

setInexactRepeating() to create alarms

Background, Services, Notifications 20

Alarms

String svcName = Context.ALARM_SERVICE;
AlarmManager alarms;
alarms = (AlarmManager) getSystemService(svcName);

int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;
long timeOrLengthOfWait = 10000;
String ALARM_ACTION = "ALARM_ACTION";

Intent intentToFire = new Intent(ALARM_ACTION);
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 0, intentToFire, 0);

alarms.set(alarmType, timeOrLengthOfWait, pendingIntent);

